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The limited capacity of working memory is a key concept in 
both classic and contemporary theories of cognition (Cowan, 
2005; Miller, 1956). Individual differences in working mem-
ory capacity predict differences in a wide range of higher-
order cognitive abilities. This predictive ability appears to be 
particularly strong for visual working memory (VWM) capac-
ity, which accounts for more than 40% of the variance in 
global fluid intelligence (Fukuda, Vogel, Mayr, & Awh, 2010) 
and almost 80% of the variance in overall cognitive perfor-
mance (Gold et al., 2010). VWM capacity varies across the 
life span (Gazzaley, Cooney, Rissman, & D’Esposito, 2005) 
and is reduced in people with psychiatric disorders (Gold  
et al., 2010). An understanding of the limits of VWM capacity 
is therefore essential for an understanding of the human mind.

Two broad classes of theories of VWM capacity have been 
proposed (for a review, see Luck, 2008). Flexible-resource 
theories propose that VWM capacity reflects the flexible allo-
cation of limited cognitive resources. According to these theo-
ries, allocating more resources to an item will allow it to be 
represented with greater quality or precision (Bays & Husain, 
2008; Palmer, 1990; Wilken & Ma, 2004). That is, resources 
can be focused on a small number of items to create high-
quality representations or distributed among a large number of 
items to create low-quality representations. In contrast, limited-
item theories propose that the number of items in memory 
(i.e., capacity, K) is strictly limited and cannot be increased by 

decreasing the precision of the representations (Anderson, 
Vogel, & Awh, 2011; Zhang & Luck, 2008). In these theories, 
VWM capacity is analogous to a set of slots rather than a pool 
of resources.

These theories can be directly tested only with tasks that 
involve remembering simple features, for which the concept of 
precision can be unambiguously operationalized. Researchers 
have used this approach in several recent studies by testing 
memory for arrays of single-feature items and measuring how 
precision and K vary as the set size (the number of items to be 
remembered) varies. In some of these studies, K increased and 
precision decreased as the set size increased to 3 or 4 items, at 
which point both K and precision reached an asymptote (Ander-
son et al., 2011; Zhang & Luck, 2008). The findings from these 
studies support limited-item theories of VWM capacity. How-
ever, results from other studies, in which no asymptote for either 
K or precision was found (Bays & Husain, 2008; Wilken & Ma, 
2004), support flexible-resource theories.

In all of these studies, the researchers varied the number of 
items in the displays, assuming that observers would attempt 
to store as many items as possible in VWM. However, it is 
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possible that observers would strategically devote all of their 
resources to a limited number of items when the set size is 
large even if they could, in principle, store a low-quality rep-
resentation of every item. We therefore took a different 
approach in the present study to assess the most fundamental 
difference between flexible-resource and limited-item theo-
ries, which is whether people can increase the number of items 
stored by decreasing the quality of the representations when 
motivated to do so.

We report the results of four experiments. Participants in all 
experiments were University of California, Davis, students 
between the ages of 18 and 30; all had normal color vision and 
normal or corrected-to-normal visual acuity. In Experiments 1, 
2, and 3, we used three different methods to motivate observ-
ers to store a large number of low-precision representations. 
All three of these approaches failed to produce an increase in 
the number of items stored in VWM. In Experiment 4, we 
demonstrated that trade-offs between K and precision can be 
produced in iconic memory, which indicated that the failure to 
increase the number of items stored in VWM in the earlier 
experiments was not caused by weak manipulations of moti-
vation. Thus, our manipulations were strong enough to influ-
ence iconic memory, but they could not induce a trade-off 
between quality and quantity in working memory.

Experiment 1
To measure K and precision independently, we used a VWM 
recall task in which observers were presented with a set of 
colored items and then reported the color of one item—indi-
cated by a probe at the time of test—by clicking on a color 
wheel (Fig. 1a; see Zhang & Luck, 2008). If the probed item 
was present in VWM, then the observer’s response would be 
near the correct color, and errors would be distributed nor-
mally around the correct color. If, however, the probed item 
was absent from memory, then the observer would have to 
guess randomly, and the result would be a uniform distribution 
of errors. If the observer remembered the probed item on some 
trials and guessed randomly on other trials, the overall distri-
bution of errors would consist of a mixture of a normal distri-
bution and a uniform distribution, which is identical to a 
normal distribution with a vertical offset. It is possible to 
mathematically decompose such a mixture into its compo-
nents. The standard deviation of the normally distributed por-
tion of the mixture reflects the precision of the representation 
when the probed item is present in memory. The amount of 
vertical offset can be used to determine the probability that the 
probed item was present in memory, and K is the set size mul-
tiplied by this probability. This analytic approach has been 
used in several recent studies (Anderson et al., 2011; Zhang & 
Luck, 2008, 2009).

We manipulated the amount of precision needed to perform 
the experimental task by varying the number of distinct colors 
in the color wheel. In the high-precision condition (see Fig. 
1a), the color wheel contained 180 equally spaced color 

values. After participants indicated their response on each 
trial, they were given feedback about the distance between the 
color of the probed item and the reported color (i.e., the mag-
nitude of the recall error). A precise representation was needed 
to minimize the error in this condition. In the low-precision 
condition (Fig. 1b), the color wheel contained a small set of 
discrete spokes. A relatively imprecise representation was suf-
ficient to produce a correct response in this condition, and 
storing a large number of low-quality representations in VWM 
would therefore maximize overall performance. If observers 
were able to increase K by decreasing the precision of repre-
sentations, then they should have been able to store more items 
in the low-precision condition than in the high-precision 
condition.

Method
Two separate groups of 13 observers participated in Experi-
ments 1a and 1b. Stimuli were presented on a CRT monitor 
with a gray background (15.1 cd/m2) and a continuous fixation 
point at a viewing distance of 57 cm. Each trial began with the 
presentation of a sample array for 200 ms. This array consisted 
of four colored squares (2° × 2°). The colors were selected 
from a master set of 180 evenly distributed and isoluminant 
hues on a circle in the perceptually homogeneous Commission 
Internationale de l’Eclairage Lab color space (for details, see 
Zhang & Luck, 2008).

After a 1,000-ms delay, a test array was presented. The test 
array consisted of four outlined squares at the locations of the 
four squares in the sample array and a color wheel (8.2° diam-
eter; 2.2° thickness). The outline of the probe square was 
thicker than that of the other squares in the test array; observ-
ers were instructed to report the color of the corresponding 
sample square. In the high-precision condition, the color 
wheel consisted of all 180 colors in the master set. In the low-
precision condition, it consisted of 9 (Experiment 1a) or 6 
(Experiment 1b) colored spokes (0.29° wide); one of the 
spokes was the same color as the probed sample square, and 
the colors of the other spokes were at 40° (Experiment 1a) or 
60° (Experiment 1b) increments from this color. In both con-
ditions, observers were instructed to indicate which color 
exactly matched the color of the probed sample square by 
clicking a mouse; observers were given as much time as they 
needed to respond. Each of the colors in the sample array was 
one of the colors present in the array of spokes used in the 
low-precision condition; consequently, the colors in the sam-
ple array were separated by multiples of 40° (Experiment 1) 
or 60° (Experiment 2) in both the low-precision and the high-
precision conditions. Feedback consisted of an arrow that 
pointed to the correct answer and a cross positioned at the 
reported color; the angular difference between these two 
markers represented the magnitude of recall error. Each 
observer completed 24 practice trials and 150 experimental 
trials in each condition; the order of conditions was counter-
balanced across observers.
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Maximum likelihood estimation was used to determine the 
SD and K parameters (for details, see Zhang & Luck, 2008). 
Note, however, that none of the conclusions we draw from this 

study depend on the use of this specific quantitative model 
because similar results were obtained when we simply com-
pared the raw distributions of recall errors across conditions 
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Fig. 1. Trial structure and results from Experiment 1. In the high-precision condition of Experiments 1a and 1b (a), 
a sample array of four colored squares was presented for 200 ms. After an interstimulus interval of 1,000 ms, the 
test array was presented; this array consisted of a color wheel containing 180 equally spaced color values and four 
outlined squares at the locations of the four squares in the sample array. One of the squares in the test array had a 
thicker outline, and observers reported their memory for the color of the corresponding sample-array square by 
clicking on the color wheel. In the test array for the low-precision condition of Experiment 1a (b), the color wheel 
contained nine spokes. The graphs show (c) the mean number of items stored in memory (K) and the standard 
deviation (inversely related to the precision of the representations) for each condition in Experiment 1a and (d) K 
for each condition in Experiment 1b. For Experiment 1b, we present only results for K because standard deviations 
could not be estimated reliably in that experiment given the granularity of the test displays. Error bars in all graphs 
represent within-subjects 95% confidence intervals (Cousineau, 2007).
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using analysis of variance (see the Supplemental Material 
available online for details).

Results and discussion
Figure 1c shows the mean K and SD estimates for each condition 
in Experiment 1a, and Figure 1d shows the mean K estimate for 
each condition in Experiment 1b (see the Supplemental Material 
for raw data and goodness-of-fit results). In both experiments, K 
was nearly identical between the low-precision and high- 
precision conditions.1 Paired t tests showed that there were no 
significant differences between the low-precision condition and 
high-precision condition in either experiment—Experiment 1a: 
t(12) = 0.80, p = .43; Experiment 1b: t(12) = 1.20, p = .25. A 
Bayes factor analysis (Rouder, Speckman, Sun, Morey, & Iver-
son, 2009) indicated that the null hypothesis (no difference 
between the low-precision and high-precision conditions) was 
3.57 times more likely to be true than the alternative hypothesis 
(a difference between conditions) in Experiment 1a and was 2.52 
times more likely to be true than the alternative hypothesis in 
Experiment 1b. In addition, confidence interval analyses indi-
cated that we can be 95% confident that K was increased in the 
low-precision condition relative to the high-precision condition 
by no more than 0.24 items in Experiment 1a and no more than 
0.08 items in Experiment 1b. Thus, although it is impossible to 
prove the null hypothesis, these results show that the null hypoth-
esis was substantially more likely to be true than the alternative 
hypothesis and that, even if there was a real effect, it was very 
small (less than a quarter of an item’s worth of increased capacity 
in the low-precision condition).

We also found no indication of reduced precision (increased 
SD) in the low-precision condition relative to the high- 
precision condition of Experiment 1a (SD could not be mean-
ingfully estimated for Experiment 1b because there were only 
six possible responses). The difference in SD between condi-
tions was not significant, t(12) = 0.65, p = .53, and a Bayes fac-
tor analysis indicated that the null hypothesis was 3.96 times 
more likely to be true than the alternative hypothesis. In addi-
tion, a confidence interval analysis indicated that we can be 
95% confident that the SD was no more than 4.82° larger in the 
high-precision condition than in the low-precision condition.

These results indicate that observers cannot increase the 
number of items in VWM or decrease the precision of the rep-
resentations even in a task that requires only low precision.

Experiment 2
In Experiment 2, we used a different method to encourage 
observers to reduce precision and thereby increase the number 
of items stored in VWM. Rather than being provided with exact 
feedback about the difference between the reported color and 
the color of the probed item, observers were simply told whether 
their response was correct or incorrect. In the low-precision 
condition, a response was considered correct if it was within 60° 
of the correct color value; in the high-precision condition, a 
response was considered correct if it was within 15° of the 

correct color value. Thus, if it is possible to trade off precision 
for the number of items stored in VWM, observers could have 
maximized their performance in the low-precision condition by 
maintaining a large number of imprecise representations.

Our method in Experiment 2 eliminated the physical differ-
ences between the color wheels in the two conditions of 
Experiment 1. This manipulation can be conceived as requir-
ing different decision criteria in the different conditions, an 
approach that has been used for decades to distinguish between 
continuous and discrete processes in signal detection theory 
(Atkinson & Juola, 1973, 1974; Mandler, 1980).

Method
The procedure of Experiment 2 was the same as that of the high-
precision condition of Experiment 1a with the following excep-
tions. A new sample of 14 observers was tested. After each 
response, we provided observers with feedback using a white 
arc that measured either 30° (high-precision condition) or 120° 
(low-precision condition). This arc was superimposed on the 
color wheel so that it was centered at the location of the correct 
color. In principle, observers could have used the midpoint of 
the arc to determine the distance between their response and the 
color of the probed item, but they were instructed solely to make 
sure that their response was within the range indicated by the 
arc, and they were not informed that the midpoint of the arc 
denoted the location of the correct color.

Results and discussion
Figure 2a shows the mean K and SD values for each condition. 
Observers stored an average of 2.44 items in both the low-
precision and the high-precision conditions. These values 
were not significantly different, t(13) = 0.39, p = .71, and the 
Bayes factor analysis indicated that the null hypothesis was 
4.64 times more likely to be true than the alternative hypothe-
sis was. In addition, a confidence interval analysis indicated 
that we can be 95% confident that K was no more than 0.40 
items greater in the low-precision condition than in the high-
precision condition. These results provide converging evi-
dence against flexible-resource theories.

Responses were slightly more precise in the high-precision 
condition than in the low-precision condition, and this small 
difference between conditions was marginally significant, 
t(13) = 2.12, p = .054. However, the Bayes factor analysis 
indicated that a difference between conditions was only 1.27 
times more likely to be true than the null hypothesis was. 
Moreover, the 2° difference we observed was tiny relative to 
the 90° difference in the precision requirements of the low-
precision and high-precision conditions.

Experiment 3
Because it is possible that the observers in Experiments 1 and 
2 were not sufficiently motivated to decrease the precision of 
the stored representations, we provided them with monetary 
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Fig. 2.  Results from (a) Experiment 2, (b) Experiment 3, (c) Experiment 4a, and (d) Experiment 4b. 
The graphs show the mean number of items remembered (K; left column) and their standard deviation 
(inversely related to precision; right column) for the low-precision and high-precision conditions in each 
experiment. Error bars represent within-subjects 95% confidence intervals (Cousineau, 2007).
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incentives in Experiment 3. Specifically, observers earned 
money for responses that were within 20° (high-precision con-
dition) or 60° (low-precision condition) of the correct color. 
Observers could earn more money in the low-resolution con-
dition by reducing their precision and increasing the number 
of items stored in VWM.

Method
The procedure of Experiment 3 was the same as that of the 
high-precision condition in Experiment 1a, with the follow-
ing exceptions. A new sample of 10 observers was tested. In 
the high-precision condition, observers earned $0.06 if their 
response fell within 20° of the color of the probed item and 
earned nothing otherwise. In the low-precision condition, 
observers earned $0.04 if their response fell within 60° of the 
color of the probed item and earned nothing if the response 
fell 60° to 100° from the correct value. To encourage observ-
ers to store in memory at least some information about every 
item in the low-precision condition, we penalized them $0.02 
for wild guesses (responses that were more than 100° from 
the correct color). In addition, observers received a base  
payment of $10.00. The observers were fully informed of  
the payment contingencies. The amount of money earned on 
each trial and the total earnings were displayed at the center 
of the screen.

Results and discussion
Figure 2b shows the mean K and SD values for each condition. 
The K values in the low-precision and high-precision condi-
tions were not significantly different, t(9) = 1.39, p = .20. A 
Bayes factor analysis indicated that the null hypothesis was 
1.87 times more likely to be true than the alternative hypothesis 
was. In addition, a confidence interval analysis indicated that 
we can be 95% confident that K was no more than 0.32 items 
greater in the low-precision condition than in the high-precision 
condition. The payoff manipulation had no significant impact 
on SD, t(9) = 0.64, p = .54. The null hypothesis for SD was 
3.56 times more likely to be true than the alternative hypothe-
sis was, and we can be 95% confident that the SD was no more 
than 4.90° larger in the low-precision condition than in the 
high-precision condition.

Observers earned an average of $13.69 in both the low- and 
the high-precision conditions. For an observer to earn the 
maximum amount of money, his or her optimal SD would have 
been 25.2° in the high-precision condition and 38.8° in the 
low-precision condition (assuming the K-SD trade-off proposed 
by Bays & Husain, 2008; for details, see the Supplemental 
Material). The observed SD of 24.7° in the high-precision 
condition was close to the optimal SD. However, the observed 
SD of 26.2° in the low-precision condition was significantly 
lower than the optimal value of 38.8°, t(9) = 3.35, p = .004; 

observers would have increased their incentive-based earnings 
by 38% if they had been able to achieve the optimal SD in this 
condition. Thus, even in the presence of financial incentives, 
observers were unable to strategically increase the number of 
items stored in working memory by reducing the precision of 
the representations. Experiment 4 was designed to determine 
whether our incentive structure was sufficiently powerful to 
influence trade-offs under conditions that required minimal 
VWM involvement.

Experiment 4
Research in computational neuroscience has suggested that 
the functional properties of neural systems underlying VWM 
necessarily limit the number of discrete representations (Raf-
fone & Wolters, 2001; Wang, 2001). However, there is no rea-
son to believe that earlier stages of visual representation are 
subject to the same limits. In fact, trade-offs between the num-
ber of attended items and their resolution have been demon-
strated in several studies of perception (Alvarez & Franconeri, 
2007; Eriksen & Yeh, 1985; Horowitz & Cohen, 2010; How-
ard & Holcombe, 2008; Shulman, Wilson, & Sheehy, 1985; 
Treisman & Gormican, 1988). Therefore, in Experiment 4, we 
sought to determine whether payoff manipulations could influ-
ence performance under conditions that were not limited by 
the constraints of VWM storage. In Experiment 4a, we elimi-
nated the delay between the offset of the sample array and the 
onset of the test array, allowing observers to select information 
from higher-capacity, more fragile memory systems (Land-
man, Spekreijse, & Lamme, 2003; Sperling, 1960). We manip-
ulated the payoffs as we had in Experiment 3, predicting that 
in this situation, observers would be able to trade precision for 
the number of items stored. Experiment 4b was identical to 
Experiment 4a except that the delay between the offset of the 
sample array and the onset of the test array was reinstated so 
that observers would be forced to use VWM.

Method
The procedure of Experiment 4 was the same as that of Experi-
ment 3, with the following exceptions. To avoid ceiling effects, 
we increased the set size to six items. To avoid masking of 
iconic memory, we replaced the test array with a single arrow 
adjacent to the location of the probed item. To further mini-
mize masking, we presented not only the test array but also the 
sample array with a color wheel, which was rotated randomly. 
In addition, observers earned points instead of money because 
pilot testing indicated that monetary incentives were unneces-
sary. We eliminated the delay between the offset of the sample 
array and the onset of the probe in Experiment 4a to minimize 
observers’ use of VWM, but reinstated the delay in Experi-
ment 4b. New samples of 9 and 12 observers were tested in 
Experiments 4a and 4b, respectively.
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Results and discussion
The mean K and SD values for each condition are shown in 
Figures 2c and 2d. The results from Experiment 4b were 
similar to those from Experiment 3, with no difference in K or SD 
between the low-precision and high-precision conditions—K: 
t(11) = 0.06, p = 0.95; SD: t(11) = 0.57, p = 0.58. A Bayes fac-
tor analysis favored the null hypothesis by a factor of 4.65 for 
K and 4.00 for SD, and we can be 95% confident that any 
increase in the low-resolution condition was no more than 
0.24 items for K and no more than 1.62° for SD. Thus, we 
found that when performance was limited by VWM, observers 
could not trade precision for an increase in the number of 
items stored in memory.

In Experiment 4a, which minimized VWM involvement, K 
increased significantly from 2.76 items in the high-precision 
condition to 3.96 items in the low-precision condition, t(8) = 
3.76, p = .006, and this effect was accompanied by a signifi-
cant increase in SD from 13.0° in the high-precision condition 
to 23.4° in the low-precision condition, t(8) = 3.31, p = .011. 
Thus, providing incentives for low precision led to a nearly 
2-fold increase in precision and a 43% increase in K. The alter-
native hypothesis (a difference between the low-precision and 
high-precision conditions) was 10.7 and 6.1 times more likely 
to be true than the null hypothesis for SD and K, respectively. 
Even though the incentives were not monetary, observers 
could trade precision for the number of items stored when per-
formance was based primarily on processes that precede 
VWM encoding.

Statistical comparisons of Experiments 4a and 4b were per-
formed with a mixed-model, two-way analysis of variance. 
Because there were differences in K and SD between the low- 
and high-precision conditions in Experiment 4a but not in 
Experiment 4b, there was a significant interaction between 
experiment and condition for both K, F(1, 19) = 9.18, p = .007, 
and SD, F(1, 19) = 4.53, p = .04. Thus, incentives had no impact 
on K or SD when the task stressed VWM, but they had a large 
effect when the task stressed perception and iconic memory.

General Discussion

Our results from multiple experiments provide converging 
evidence that VWM capacity is characterized by a limit on the 
number of items that can be stored rather than by a finite pool 
of continuously divisible resources. We repeatedly found that 
observers could not increase the number of representations in 
VWM by reducing the precision of the representations, 
whether observers were motivated to do so by the number of 
response alternatives, by the granularity of the feedback, or by 
direct incentives. In contrast, we found that observers could 
trade the precision of representations for storage of a greater 
number of items at an earlier stage of representation; this find-
ing is consistent with results of previous psychophysical and 
electrophysiological studies.

Our results should not be taken to imply that precision in 
VWM is completely inflexible. Other research has shown that 
precision and number of items can be traded off in VWM when 
the number of items is below the item limit: Precision can be 
increased when attention is focused on a single item by a spa-
tial cue (Zhang & Luck, 2008) or by payoffs (Zhang & Luck, 
2011). Our results are consistent with studies showing that pre-
cision increases as set size decreases below the item limit 
(Anderson et al., 2011; Zhang & Luck, 2008). Thus, observers 
can strategically increase precision by focusing resources onto 
a smaller number of items (see Zhang & Luck, 2008, for a 
quantitative model of resource allocation in VWM). However, 
there is a limit on the number of items that can be stored, and 
observers cannot exceed this limit by reducing the quality or 
complexity of the representations (Alvarez & Cavanagh, 2004; 
Awh, Barton, & Vogel, 2007; Barton, Ester, & Awh, 2009).

The item limit may arise from the need to segregate indi-
vidual VWM representations to avoid interference that would 
cause them to collapse (e.g., Raffone & Wolters, 2001). Conse-
quently, the overall storage capacity of VWM may be modifi-
able by factors that influence the segregation of representations. 
For example, extensive training may increase K by optimizing 
segregation processes (Klingberg, 2010; Scolari, Vogel, & Awh, 
2008).

K may also be increased by means of chunking strategies 
that allow more efficient use of each representation (Miller, 
1956). Results from previous studies in which observers 
appeared to trade off precision and capacity (e.g., Bays & 
Husain, 2008; Wilken & Ma, 2004) may be explained by the 
observers’ use of chunking strategies. For example, an observer 
who is shown 20 haphazardly scattered dots might organize 
the dots into four clusters and store the centroid of each cluster 
in VWM. Only four representations would be present in 
VWM, but all 20 dots would contribute to these representa-
tions. If asked to report the remembered location of a single 
dot, the observer could use the stored cluster centroids to make 
an informed guess, and the precision of this response would be 
related to the number of dots in each cluster. In this manner, 
observers could use a small set of discrete representations to 
flexibly represent a large number of items at the cost of 
reduced precision. Precision and number of items would be 
traded off from the perspective of performance, but there 
would still be a strict item limit from the perspective of the 
underlying representational structure and neurobiology.
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Note
1.  The K values were considerably lower in Experiment 1a than in 
Experiment 1b, but these results likely reflect random differences 
between the participants in the two experiments. More generally, the 
K values observed with the color-wheel recall paradigm used in this 
study tend to be lower than those observed with change-detection 
paradigms. However, the K values are highly correlated across para-
digms (Gold et al., 2010; Zhang & Luck, 2008).
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Supplementary Materials for 

The Number and Quality of Representations in Working Memory 
 

Parameter Fits 

Supplementary Figure S1 shows the observed pattern of responses in each experiment, 

quantified as the distance between the reported color and the actual color, along with curves 

showing the estimated values from the parameter fitting procedure.  Supplementary Table S1 

shows the quality of the fits, estimated with adjusted R2. 

Model-Independent Analyses 

It should be noted that the conclusions drawn from this study do not depend on our specific 

quantitative model of VWM.  That is, the raw data from which the parameters were estimated 

show no differences between the low- and high-precision conditions in any of the experiments 

except Experiment 4a (in which the K and SD parameters were found to vary as well).  This can 

be seen visually in the figure, and it was supported by ANOVAs conducted for each experiment 

with factors of condition (low or high precision) and error bin (with 6 bins for Experiment 1b 

and 9 bins for all other experiments).  A significant interaction between condition and error bin 

was found for Experiment 4a [F(8,64)=3.22, p=0.004], but not for any other experiment.  Thus, 

the distribution of errors was not influenced by the precision needed for the task in any of the 

experiments in which performance was limited by VWM, but the distribution was significantly 

influenced by the precision manipulation when performance was not limited by VWM. 

Optimal Performance in Experiment 3 

If precision can be traded for capacity, then observers should have attempted to increase the 

number of representations by decreasing precision in the low-precision condition of Experiment 

3.  However, this assumes that the payoff contingencies used in this experiment were sufficient 

to motivate a change in precision.  To assess this, we computed the amount of money that would 
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have been expected as a function of the K/SD tradeoff in each condition, using the tradeoff ratio 

proposed in a leading resource model (Bays and Husain, 2008).  Figure S2 shows the expected 

earnings as a function of the SD, along with the optimal and observed SD values.  The observed 

SD was near the optimal value in the high-precision condition (because we designed the 

contingencies to reflect typical SD values), but it was far from the optimal value in the low-

precision condition. 
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Figure S1.  Probability distribution of error magnitude (difference between reported color 

and actual color) in the low- and high-resolution conditions of each experiment. 
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Figure S2. Expected reward as a function of the precision (standard deviation) adopted by 

the observer in the low- and high-resolution conditions of Experiment 3. 
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Table S1. Percentage of variance (100 × adjusted R2) explained by the quantitative model in 
each experiment. 
 
 Exp. 1a Exp. 1b Exp. 2 Exp. 3 Exp. 4a Exp. 4b 
Low-precision 88% 82% 95% 94% 94% 89% 
High-precision 96% 95% 96% 95% 91% 90% 

 
 


